[UPDATED] Mars Express chats with Curiosity: Practice makes perfect

UPDATE 16 June: MEX Deputy Spacecraft Operations Manager James Godfrey just emailed to report that yesterday’s MSL overflight seems to have gone rather well! “We have received good telemetry from the MEX Melacom radio and we are now in the process of analysing the data to extract the signal from MSL.”


Today, Mars Express established a communication link with NASA’s Curiosity rover (MSL) on the surface of Mars to conduct an important test prior to the arrival of ESA’s ExoMars Trace Gas Orbiter (TGO), carrying the the ExoMars Entry, Descent and Landing Demonstrator Module (EDM), Schiaparelli, in October.

Curiosity selfie Credit: NASA/JPL-Caltech/MSSS

Curiosity selfie Credit: NASA/JPL-Caltech/MSSS

The test saw Curiosity serve as a stand-in (rove-in?) for Schiaparelli on the surface, transmitting a signal to MEX similar to how Schiaparelli will transmit during landing on 19 October. From orbit above, MEX had its lander communication system (Melacom) – with recently updated software – configured as it will be in October, and the orbiter tested receiving signals from below.

Here’s the timeline of how today’s test went, as programmed; all commands were uploaded in advance and the sequence was executed automatically on board (times in UTC).

  1. 2016-06-15 06:22:53.000 – MEX begins to slew to point the radio antenna towards MSL’s position on the surface
  2. 2016-06-15 06:40:00.000 – Melacom Switches on
  3. 2016-06-15 06:55:00.000 – MSL starts transmitting its beacon
  4. 2016-06-15 06:55:00.000 – After a 15-minute warm-up, Melacom starts recording the signal from MSL
  5. 2016-06-15 07:05:00.000 – Melacom is powered down and the first part of the recording is complete
  6. 2016-06-15 07:10:00.000 – After a 15-minute wait, Melacom is powered back up
  7. 2016-06-15 07:14:00.000 – No waiting this time; 4 minutes allowed for start up as Melacom starts its second recording
  8. 2016-06-15 07:23:00.000 – MSL stops transmitting
  9. 2016-06-15 07:23:00.000 – Melacom is powered down and the second recording is complete
  10. 2016-06-15 07:23:10.000 – Test complete; MEX now begins to slew back to Earth; data will be dumped in a few hours
Melacom

A photo of the Melacom UHF communications package carried on Mars Express.

Note: Data were still arriving as we posted this, so no analysis to report yet:

Here’s a brief description of the actual Schiaparelli arrival activity that this test was meant to exercise (see also: A little help from friends):

On 19 October, about 80 minutes before landing, expected at 14:48 GMT (16:48 CEST), Schiaparelli will wake up and a few minutes later begin transmitting a beacon signal (Schiaparelli will have se4parated from the ExoMars/TGO orbiter on 16 October).

Mars Express will already have pointed Melacom’s small antenna to the spot above the planet where Schiaparelli will appear, and will begin recording the beacon signal, ‘slewing’ – rotating – continuously so as to keep its antenna pointed to follow the module’s descent trajectory.

ExoMars 2016 Schiaparelli descent sequence Credit: ESA/ATG medialab

ExoMars 2016 Schiaparelli descent sequence Credit: ESA/ATG medialab

“Recording will continue through touch-down and the first approximately fifteen minutes of surface operation, after which Schiaparelli will be programmed to switch off and Mars Express will stop recording,” says Mars Express Spacecraft Operations Engineer Simon Wood.

The Schiaparelli signal data will be saved on board Mars Express in two segments; the first, larger, segment will record signals from wake up of the module until about 20 minutes before it reaches the Martian atmosphere, while the second, smaller, segment will record the descent through the atmosphere, touch down and the first 15 minutes of surface operations.

“Then, Mars Express will re-orient its main antenna toward Earth and download the second, smaller segment of recorded data, which should contain the first in-situ confirmation from Mars of Schiaparelli’s arrival and landing,” says Simon.

The data will be received via ESA’s Cebreros deep-space ground station, in Spain, by the Mars Express flight control team at ESOC, ESA’s mission control centre in Darmstadt, Germany, and then passed on to the ExoMars mission controllers.

Even more friends

Mars Express won’t be the only ‘set of ears’ listening in to Schiaparelli’s descent that day.

At Mars, NASA’s Mars Reconnaissance Orbiter (MRO) will monitor signals from Schiaparelli, but only after its landing, due to MRO’s orbital geometry.

MRO - Mars Reconnaissance Orbiter

Credit: NASA/JPL-Caltech

The TGO orbiter, while conducting its own critical orbit entry manoeuvre, will also record Schiaparelli’s descent and landing, but this data can only be downloaded some hours after it has completed orbit entry.

In the following days, Mars Express and MRO – as well as the other NASA Mars orbiters, Odyssey and MAVEN – will each serve as data-relay platforms, overflying Schiaparelli’s landing site in Meridiani Planum once or twice per day, picking up data transmitted from the lander during its nominal two- to four-day surface science mission, and relaying these to Earth.

Mars Express will also support the Schiaparelli mission through remote sensing measurements over the landing site during several weeks prior to the event.

 

Acquisition of signal from Curiosity!

MEX Spacecraft Operations Engineer Simon Wood points to telemetry packets streaming down from Mars Express, indicating that signals were received earlier this afternoon from NASA’s Curiosity on the surface. Test of the contingency relay link using Mars Express is complete!

Testing cooperation: ESA’s Mars Express transmits commands to NASA rover

This update sent in earlier today by ESA’s Simon Wood, one of the engineers working on the Mars Express mission operations team at ESOC.

Today, ESA’s Mars Express orbiter will send telecommands to NASA’s Curiosity rover on the surface of Mars.

This self-portrait of NASA's Curiosity Mars rover shows the vehicle at the "Mojave" site, where its drill collected the mission's second taste of Mount Sharp. Credit: NASA/JPL-Caltech/MSSS

This self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the “Mojave” site, where its drill collected the mission’s second taste of Mount Sharp. The scene combines dozens of images taken during January 2015 by the Mars Hand Lens Imager (MAHLI) camera at the end of the rover’s robotic arm. The pale “Pahrump Hills” outcrop surrounds the rover, and the upper portion of Mount Sharp is visible on the horizon. Darker ground at upper right and lower left holds ripples of wind-blown sand and dust. Full image and caption via NASA web. Credit: NASA/JPL-Caltech/MSSS

The transmission is part of a routine quarterly test of the communications link between MEX and Curiosity – NASA’s Mars Science Laboratory (MSL). Aside from its prime science mission, Mars Express is able to provide contingency communications with MSL (or with any NASA rovers) in case of any problems with the normal data relay links.

This particular test consists of MEX hailing MSL – sending a specific signal requesting MSL to listen – then transmitting commands (provided by the MSL team at NASA/JPL) to the rover and then recording data transmitted back.

Background sequence of activities

  • MEX mission planning system schedules pointing of MEX’s UHF (ultra high-frequency) antenna at MSL – end-December 2104
  • MSL team provides command file (i.e. the telecommands to be transmitted) to the MEX flight control team at ESOC – last week of February 2015
  • MEX flight control team uploads the commanding ‘products’ (files to be executed on board MEX) on 27 February; these were generated on 24 February
Mars Express orbiting the Red Planet - artist's impression Credit: ESA/Alex Lutkus

Mars Express orbiting the Red Planet – artist’s impression Credit: ESA/Alex Lutkus

Operations timeline today

All times UTC

14:29 MEX will slew from Earth pointing to pointing its UHF antenna at MSL on the surface
14:41 MEX UHF antenna switches on – takes 15 mins to warm up
14:56 Overflight begins with MEX hailing MSL; overflight lasts 9 mins
15:05 MEX begins to slew back toward Earth pointing

Data received from MSL will be transmitted back to Earth by MEX at around 16:30 UTC via ESA’s deep-space ESTRACK station in Malargüe, Argentina.

Later, NASA’s deep-space network teams will extract the data from the MEX packet archive and pass this on the the MSL team for analysis.

Best regards from the MEX control team at ESOC!

– Simon

Beagle retrospective

The UK-led Beagle-2 Mars lander, which hitched a ride on ESA’s Mars Express mission and was lost on Mars since 2003, has been found in images taken by NASA’s Mars Reconnaissance Orbiter. This close-up image has been sharpened to show possible details of the Beagle-2 lander on the surface of Mars.Credit: HiRISE/NASA/JPL/Parker/Leicester

The UK-led Beagle-2 Mars lander, which hitched a ride on ESA’s Mars Express mission and was lost on Mars since 2003, has been found in images taken by NASA’s Mars Reconnaissance Orbiter. This close-up image has been sharpened to show possible details of the Beagle-2 lander on the surface of Mars.Credit: HiRISE/NASA/JPL/Parker/Leicester

The big news today is the discovery, courtesy of NASA’s Mars Reconnaissance Orbiter (MRO), of the UK-led Beagle 2 lander on the surface of Mars.

Beagle 2 was meant to parachute to the surface of Mars in December 2003, but after separation, the small craft was never heard from again.

In 2014, remains of Beagle 2 were spotted by the HiRise camera on board MRO; the images and full details are here.

We thought you might enjoy seeing some archive pics of Beagle, so we gathered a selection of images showing the craft on Earth, during launch and its last-ever view seen from Mars Express from space (by the VMC camera), just after separation on 19 Dec 2003.

And, today’s YouTube video via University of Leicester

The UK-led Beagle 2 was due to land on Mars on 25 December 2003. The spacecraft was ejected from Mars Express on 19 December 2003. Nothing had been heard from Beagle 2 and the mission was presumed lost. Until now.

It has now been announced that the Mars Lander has been identified partially deployed on the surface of Mars by images taken by the HiRISE camera on NASA’s Mars Reconnaissance Orbiter (MRO). These images show potential targets on the surface of Mars for the lander and key entry and descent components within the expected landing area.

Following analysis by members of the Beagle 2 team, which includes Leicester scientists, and NASA, the images show the Beagle 2 lander in what appears to be a partially deployed configuration with the main parachute and what is thought to be the rear cover close by.

Several interpretations of the image of the lander have been identified, consistent with the lander’s size and shape and changes in light reflections suggest that the object is metallic – again consistent with Beagle 2.

ESA Mars Express HRSC images now available under a Creative Commons licence

Editor’s note: This is cross-posted from ESA’s new Communication blog; the original was published earlier today by Marco Trovatello.

Following its arrival at the Red Planet in December 2003, imagery from ESA’s Mars Express mission has proved immensely popular, with the High Resolution Stereo Camera (HRSC) on board the spacecraft playing a major role.

Since January 2004, ESA and its partners at the German Aerospace Center (DLR) and the Freie Universität Berlin (FUB) have been jointly publishing colour, stereo pictures of the martian surface from orbit, both still and moving. For example, a “Mars showcase” video, comprised of HRSC images, has been viewed almost 700,000 times since it was published on ESA’s Youtube channel in 2013.

But starting today, something is different with these regular image releases: in a joint undertaking by all three partners, Mars Express HRSC images will be made available under a Creative Commons (CC) licence. The licence we will apply is the same one we recently introduced for Rosetta NAVCAM images: CC BY-SA IGO 3.0, with credit to ESA/DLR/FU Berlin. In practical terms it will look like this:

Hellas Chaos

Hellas Chaos on Mars. Image Credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO

And as luck would have it, we have a Mars Express HRSC movie release today which becomes the first to be covered by this Creative Commons licence:

Please read the full article on the ESA web portal here.

The licence will also be applied retroactively to all HRSC images released to date. As with Rosetta NAVCAM images, please bear with us as it will take a while to go back and change the credit lines for all of those images in our online galleries. But as a start, we have applied the new licencing to all HRSC images in our Mars Express Flickr album.

While at ESA we have only just begun releasing content under Creative Commons licences, our partners at DLR have been using CC as their standard licencing policy since 2012. Nevertheless, there is still something just a little bit special about the news today: as far as we know, it is the first time that three public organisations in Europe have teamed up in licencing a batch of joint content under Creative Commons.

For more in-depth info on ESA’s implementation of the CC BY-SA 3.0 IGO licence, please also read this blog post that I wrote with my colleague Mark McCaughrean.

Mars Express: 10 years mission highlights graphic

A super-nice graphic showing operations and science highlights from ESA’s Mars Express mission, which celebrated 10 years since launch on 2 June 2013.

The central image of Mars is composed of images taken by the High Resolution Stereo Camera (HRSC), which has mapped around 95% of the planet’s surface. The images of Phobos and Deimos were also taken by the HRSC.

Access the original hi-res TIFF file in the ESA website

Mars Express mission highlights. Images of Mars, Phobos & Deimos: ESA/DLR/FU Berlin (G. Neukum)

Mars Express mission highlights. Images of Mars, Phobos & Deimos: ESA/DLR/FU Berlin (G. Neukum)

 

Ten years of the Planetary Fourier Spectrometer (PFS)

Today’s post – part of a series of reports marking the MEX 10th anniversary – was submitted by Marco Giuranna, the Principle Investigator for the PFS instrument. Marco works at the IAPS Istituto di Astrofisica e Planetologia Spaziali (INAF), Rome – Ed.

It’s been ten years since Mars Express was launched on 2 June 2003. Ten years full of exciting moments, challenges, and beautiful memories. I could never forget that moment.

It was 10 January 2004. We were all insidem a small room at the European Space Operations Centre (ESOC), Darmstadt, Germany, in the very early morning hours. It was very cold outside, something like -10°C, or even colder. All the PIs for the various instruments were in that room, together with a couple members of each science team. I was among them, as a member of the Planetary Fourier Spectrometer (PFS) team. We were all waiting for the very first observation of Mars!

At that time, Vittorio Formisano was the PI for PFS. I was only a young student. I was responsible for the calibration of PFS; in other words, I had to transform the raw data sent by the instrument into quantitative measurements of Mars.

The room was silent, with only some whispering here and there. “Will the instrument switch on? Will it work properly?” I bet everyone was wondering the same questions.

All of a sudden: sounds of keyboards everywhere, people running around talking loudly… It took me a few seconds to realize what was going on: the first data were arriving!

We checked our data… everything was OK and PFS was working well. Everyone was so happy!

Everyone, except me.

Well, it’s not that I wasn’t happy. Of course I was, but an additional challenge was awaiting me: calibration.

Will the algorithms developed in the laboratory work also for Mars? I couldn’t answer that question – I was so nervous. But the moment has come. I got the data and loaded them into the software. All I had to do was to press the ‘run’ button… and hope for the best. Click.

“Mars is warmer than the Earth!” I shouted.

Single PFS measurement of Mars acquired during the very first set of observations around the equator, January 2004

Single PFS measurement of Mars acquired during the very first set of observations around the equator, January 2004. The signal around 1300 cm-1 gives a first estimation of the surface temperature: 285K.

 

Yes! The calibration was successful!

The first PFS observations of the Red Planet passed over the equator, and allowed a first estimation of the temperature of the surface there: around 285 K (~12 °C), much warmer than in Darmstadt!

I was so happy, I took a screenshot of the first calibrated measurements of PFS and sent it by email to all the Co-investigators around the world. I will never forget the expression of Vittorio. After all those years of hard work, his instrument was finally observing Mars!

Since then, PFS has collected almost two million measurements of Mars, allowing analyses of its atmospheric composition, circulation and climatology: ten years of top-quality science and exciting results. Who could imagine that a little feature observed in the PFS measurements would have led to one of the ten most important discoveries of the last years, and of Mars Express: methane on Mars!

First detection of Methane with PFS. Credit: ESA/IANF/IAPS

First detection of methane (CH4) with PFS (adapted from Formisano et al., 2004. Science 306, p1758).

PFS is still operating and will continue to monitor the Martian atmosphere for new, exciting results.

Happy Birthday, Mars Express!

Mars Express profiled in Holland’s Space Society magazine

The Mars Express 10-year anniversary is being celebrated in the magazine Ruimtevaart of the Netherlands Space Society.

NL Ruimtevaart Magazine Credit: Netherlands Space Society

NL Ruimtevaart Magazine Credit: Netherlands Space Society

The 2013/2 edition contains an overview of the most stunning HRSC pictures. Later this year, a more in-depth article about the full mission is planned based on inputs from the MEX project scientist and mission manager.

Thanks, Mars Express operations engineer Kees van der Pols at ESOC for this!

 

Mars Express to relay first science data from Mars Curiosity

This weekend is shaping up to be a big one for ESA/NASA interplanetary cooperation!

Early on Saturday morning, 6 October, central European time, ESA’s Mars Express will look down as it orbits above the Red Planet, lining up its Lander Communication System (MELACOM) antenna to point at NASA’s Mars Curiosity on the surface.

Mars Express Credit: ESA

Mars Express Credit: ESA

For 15 minutes, the NASA rover will transmit scientific data up to MEX, which will store it on board for a time. Then, two hours later, MEX will line up again, this time pointing its High Gain antenna toward Earth to downlink the precious information to the European Space Operations Centre (similar in role and function to NASA/JPL, but without the glorious California weather – Ed.), Darmstadt, Germany.

ESA's first 35-metre deep-space ground station is situated at New Norcia, 140 kilometres north of Perth in Australia. The 630 tonne antenna will be used to track Rosetta and Mars Express, the latter to be launched in 2003, as well as other missions in deep space. The ground station was officially opened on 5 March 2003 by the Premier of Western Australia, Hon Dr Geoff Gallop. Credits: ESA

ESA’s first 35-metre deep-space ground station is situated at New Norcia, 140 kilometres north of Perth in Australia.
Credits: ESA

The signal will be received via ESA’s 35m deep space station at New Norcia, Australia, and the data will be immediately made available to NASA/JPL for routine processing.

The inter-Agency communication relay service will send, for the first time, actual scientific data from Curiosity via Mars Express; the previous relay services provided to Curiosity have transmitted either so-called ‘open-loop’ signals (no data decoded but did include useful radio Doppler information) during Entry, Descent, and Landing, or only housekeeping data and other basic telemetry during early surface operations.

“The command stack to order MEX to slew and point its UHF antennas towards Mars Curiosity during the overflight, to switch the MELACOM radio ON/OFF and to later perform the data download are already programmed on board Mars Express. Our spacecraft is ready to go for this weekend,” Mars Express Operations Engineer Olivier Reboud told me this earlier today.

Curiosity - Robot Geologist and Chemist in One! Credit: NASA/JPL-Caltech

This artist’s concept features NASA’s Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars’ past or present ability to sustain microbial life. Credit: NASA/Caltech-JPL

Now here’s the really interesting bit: of all the data that Curiosity might be sending up for relay via MEX (Mars Curiosity carries 10 science instruments plus a drill), it looks as though we’ll be handling at least some images!

According to a note sent by NASA’s Jennifer Maxwell, at JPL, yesterday, the Mars Express team are expecting to relay:

  • Two images from the Remote Micro-Imager (RMI) of the ‘RockNest_3’ rock acquired on Sol 57 (57 martian days since Curiosity landed, i.e. 3 October)
  • Three images acquired by the Mars Hand Lens Imager (MAHLI) system of the rock named ‘Bathurst Inlet’

(See a previous view of Bathurst Inlet via the Mars Curiosity image page at JPL)

The RMI provides black-and-white images at 1024X1024 resolution in a very narrow 1.1-degree field of view. This provides images equivalent to a 1500mm lens on a 35mm camera. Wow!

'Bathurst Inlet' Rock on Curiosity's Sol 54, Close-Up View Credit: NASA/JPL-Caltech/Malin Space Science Systems

This is the highest-resolution view that the Mars Hand Lens Imager (MAHLI) on NASA’s Mars rover Curiosity acquired of the top of a rock called “Bathurst Inlet.” The rover’s arm held the camera with the lens only about 1.6 inches (4 centimeters) from the rock. Credit: NASA/JPL-Caltech/Malin Space Science Systems

MAHLI comprises a camera mounted on a robotic arm on the Curiosity rover, which is used to acquire microscopic images of rock and soil (a typical MAHLI image resolution is a stunning 21 microns per pixel).

The weekend relay will provide further operational confirmation that Mars Express can serve as a back-up relay platform for NASA’s new rover; it has already done so for NASA’s other surface missions (Phoenix and the Mars Rovers, Spirit and Opportunity) in the past couple of years.

This cross-support underscores the strong cooperation between the two Agencies, who have worked diligently for a number of years to set technical and engineering standards to enable sharing data, information and telecommand links between spacecraft, networks, ground systems and ground stations, which helps reduce risk and boost back-up capabilities in both directions.

In ESA’s MEX team, everyone’s really looking forward to the first ‘science contact’ with Curiosity – which, as mentioned in a previous post by Thomas Ormston, should provide more “proof that the amazing new rover from the United States can talk with our veteran European Mars orbiter!

First Contact! Mars Express’ first ‘conversation’ with Curiosity

As we reported yesterday, Mars Express had a busy Sunday evening, pointing first at NASA’s Curiosity rover on the surface of Mars and then swinging around to do another relay pass with Opportunity. We received the data from both of these passes this morning over ESA’s New Norcia ground station and, on first look, it seems that both relays were very successful.

First Laser-Zapped Rock on Mars

First Laser-Zapped Rock on Mars. This composite image, with magnified insets, depicts the first laser test by the Chemistry and Camera, or ChemCam, instrument aboard NASA’s Curiosity Mars rover. The composite incorporates a Navigation Camera image taken prior to the test, with insets taken by the camera in ChemCam. The circular insert highlights the rock before the laser test. The square inset is further magnified and processed to show the difference between images taken before and after the laser interrogation of the rock. The test took place on Aug. 19, 2012. Credit: NASA/JPL-Caltech/LANL/CNES/IRAP

In ESA’s MEX team, we’re particularly excited to have had our first contact with Curiosity – proof that the amazing new rover from the United States can talk with our veteran European Mars orbiter!

At the start of the contact, Mars Express was over 3600 km from Curiosity’s landing site in Gale Crater and closed in to only 1300 km by the end of the contact – streaking across the sky as seen from Curiosity.

During this overflight by Mars Express, it ‘hailed’ Curiosity in Gale Crater and the rover responded. The two spacecraft then autonomously established a link with each other and Curiosity flowed data back to Mars Express for nearly 15 minutes. This international chat between two spacecraft in deep space is proof of all our preparation, standardisation and cooperation work in action – so it’s something both agencies can be proud of.

ESA's first 35-metre deep-space ground station is situated at New Norcia, 140 kilometres north of Perth in Australia. The 630 tonne antenna will be used to track Rosetta and Mars Express, the latter to be launched in 2003, as well as other missions in deep space. The ground station was officially opened on 5 March 2003 by the Premier of Western Australia, Hon Dr Geoff Gallop. Credits: ESA

ESA’s first 35-metre deep-space ground station is situated at New Norcia, 140 kilometres north of Perth in Australia. The 630 tonne antenna will be used to track Rosetta and Mars Express, the latter to be launched in 2003, as well as other missions in deep space. The ground station was officially opened on 5 March 2003 by the Premier of Western Australia, Hon Dr Geoff Gallop.
Credits: ESA

The actual data that flowed back was made available to NASA earlier today, who will now retrieve and process the data.

Hopefully we’ll have some info from them in the next couple of days about what exactly was contained within. We’ll also receive (within Tuesday) the ‘housekeeping’ telemetry of Melacom – information on how our radio performed. This will allow us to double-check the performance of this first important contact with Curiosity.

The data was sent at a rate of only 8 kbps – 125 times slower than the 1-Mbit/second Internet connection you might have at home!

We wanted to take things easy to start with, though, and test the performance of the link. Nonetheless, we received 955 data packets from Curiosity, totalling 867 kilobytes of data.

This will be the first of several contacts with Curiosity in the future, as we better learn how to use and optimise this relay link between the two craft and the two space agencies. Watch this space for more details as we get them on this pass and the future contacts between Mars Express and Curiosity.