VMC grows up

The news is out: our little VMC webcam on board Mars Express has achieved adulthood, of sorts! In a web article on 25 May, we announced that the VMC camera is being adopted as a professional science instrument.

Mars seen in May 2016 in three different views. Full details via http://www.esa.int/marstriptych2016 Credit: D. O'Donnell - ESA/Mars Express/VMC CC BY-SA 3.0 IGO - ESA/NASA/Hubble

Mars seen in May 2016 in three different views. Full details via http://www.esa.int/marstriptych2016 Credit: D. O'Donnell - ESA/Mars Express/VMC CC BY-SA 3.0 IGO - ESA/NASA/Hubble

The article reads, in part:

This spring, ESA began working with the Planetary Sciences Group of the University of the Basque Country, Spain, for an initial two years to develop software and conduct studies of images, effectively promoting the humble camera to the level of professional science instrument.

“The analysis will help us understand the global martian context of data acquired from other instruments, provide data on clouds, dust and atmospheric structures and enable surface features to be accurately characterised, for example, by tracking variations in the Mars polar ice cap,” says Agustín Sánchez-Lavega, heading the group.

ESA's Mars Express Project Scientist Dmitri Titov is delighted that the camera is opening up a new range of investigations at Mars: “Cloud tracking and dust storm monitoring, for example, are significant topics in the planetary community, and it will allow us to extend Mars Express science ‘into the atmosphere’, filling a gap in the spacecraft’s science portfolio.

The good news is that the transition to a science instrument won't interfere with the ongoing delivery of VMC images for immediate public viewing and for continued use in outreach, education and citizen science. You remain more than welcome (highly encouraged, in fact!) to access the image sets and use them for your own analysis, processing and sharing (details on CC licensing here).

Working on VMC outreach, education and PR has been one of the most interesting and satisfying projects I've been involved with here at ESOC in recent years. I have thoroughly enjoyed being in touch with, and working with, a lot of enthusiastic folks – some within ESA, many external – all of whom have been motivated by the love of science, interest in Mars, support for education and working with an active community.

While I thoroughly enjoyed seeing (and sharing) the many VMC submissions that people on several continents sent it over the years, the most enjoyable activity for me was definitely the 2015 VMC Imaging Campaign aimed at schools, astronomy clubs, science centres and other youth groups.

The level of participation was fabulous (25 groups from the US and Europe) and the resulting work was really well done. It was a genuine pleasure to work with the MEX flight control team here to host a series of Google Hangouts, issue the challenge, receive the imaging requests and then actually conduct the dedicated observations. This might have been the first-ever allocation of multiple orbits of an interplanetary craft to schools and young folks! And it was also a pleasure to see that some groups chose to submit artistic work based on the resulting images, in addition to those who sent in more traditional science projects.

It was also a pleasure working with pro-, semi-pro- and amateur (but v. enthusiastic) planetary science nuts located all over the place!

One of the most active supporters of VMC since the beginning has been Emily Lakdawalla – herself a planetary scientist – who blogs over at the Planetary Society. Emily has done an excellent job over many years highlighting numerous ESA missions, and she was a keen 'early adopter' when the VMC images first became available in 2007/08. She promoted and shared VMC images, and designed and hosted online tutorials to help those interested in working with the images learn some of the techniques, and she inspired many others to get involved.

I asked Emily for a few comments, and she sent in this:

The VMC demonstrates the power of a simple camera for exciting the public about the adventure of space exploration. Its images are not large but they are the only ones arriving from any Mars spacecraft that show us Mars as a round planet in all its changing phases and seasons – a view out the porthole of an interplanetary ship. I'd like to see simple, small, wide-angle cameras on all spacecraft to provide context to tell the story of robotic space exploration.

It's appropriate, however, to take this opportunity to thank everyone who has contributed to VMC since its recommissioning in 2007. People have contributed time, software, knowledge, support to outreach activities, organisational efforts and enthusiasm – and so much more – helping make the VMC outreach effort a real success!

To everyone here, in alphabetical order, a huge thanks!

  • Stuart Atkinson
  • Johannes Bauer
  • Maria Bennett
  • Jean-Pierre Bibring
  • Michel Breitfellner
  • Marcello Cappelletti
  • Alejandro Cardesin
  • Michel Denis
  • Bill Dunford
  • Doug Ellison
  • Paolo Ferri
  • James Godfrey
  • Brigitte Gondet
  • Hannes Griebel
  • Andy Johnstone
  • Michael Khan
  • Rene Kloos
  • Emily Lakdawalla
  • Daniel Lakey
  • Jocelyne Landeau-Constantin
  • Luke Lucas
  • Stefan Luders
  • Mike Malaska
  • Thomas Ormston
  • Gordan Ugarkovic
  • Manfred Warhaut
  • Simon Wood

If I inadvertently left someone's name off the thanks list, DO let me know!!!!

Last but by no means least, I'd like to thank everyone who has ever downloaded, tinkered with, mashed up, colour-processed, artistically rendered, analysed, processed, shared or in any other way had total fun messing with VMC images. You guys are an inspiring community and it has been your enthusiasm that has made the VMC project a success.

If you're looking for a nice, historical overview of VMC activities with many updates from the folks who did a lot of the work, there's no better place than the VMC thread over at UnmannedSpaceFlight.

PS: As Emily pointed out in a separate email, a couple of our VMC community members have since gone on to great things: Both Mike Malaska and Bill Dunford have been absorbed by NASA/JPL!

[UPDATED] Mars Express chats with Curiosity: Practice makes perfect

UPDATE 16 June: MEX Deputy Spacecraft Operations Manager James Godfrey just emailed to report that yesterday's MSL overflight seems to have gone rather well! "We have received good telemetry from the MEX Melacom radio and we are now in the process of analysing the data to extract the signal from MSL."


Today, Mars Express established a communication link with NASA's Curiosity rover (MSL) on the surface of Mars to conduct an important test prior to the arrival of ESA's ExoMars Trace Gas Orbiter (TGO), carrying the the ExoMars Entry, Descent and Landing Demonstrator Module (EDM), Schiaparelli, in October.

Curiosity selfie Credit: NASA/JPL-Caltech/MSSS

Curiosity selfie Credit: NASA/JPL-Caltech/MSSS

The test saw Curiosity serve as a stand-in (rove-in?) for Schiaparelli on the surface, transmitting a signal to MEX similar to how Schiaparelli will transmit during landing on 19 October. From orbit above, MEX had its lander communication system (Melacom) – with recently updated software – configured as it will be in October, and the orbiter tested receiving signals from below.

Here's the timeline of how today's test went, as programmed; all commands were uploaded in advance and the sequence was executed automatically on board (times in UTC).

  1. 2016-06-15 06:22:53.000 - MEX begins to slew to point the radio antenna towards MSL's position on the surface
  2. 2016-06-15 06:40:00.000 - Melacom Switches on
  3. 2016-06-15 06:55:00.000 - MSL starts transmitting its beacon
  4. 2016-06-15 06:55:00.000 - After a 15-minute warm-up, Melacom starts recording the signal from MSL
  5. 2016-06-15 07:05:00.000 - Melacom is powered down and the first part of the recording is complete
  6. 2016-06-15 07:10:00.000 - After a 15-minute wait, Melacom is powered back up
  7. 2016-06-15 07:14:00.000 - No waiting this time; 4 minutes allowed for start up as Melacom starts its second recording
  8. 2016-06-15 07:23:00.000 - MSL stops transmitting
  9. 2016-06-15 07:23:00.000 - Melacom is powered down and the second recording is complete
  10. 2016-06-15 07:23:10.000 - Test complete; MEX now begins to slew back to Earth; data will be dumped in a few hours
Melacom

A photo of the Melacom UHF communications package carried on Mars Express.

Note: Data were still arriving as we posted this, so no analysis to report yet:

Here's a brief description of the actual Schiaparelli arrival activity that this test was meant to exercise (see also: A little help from friends):

On 19 October, about 80 minutes before landing, expected at 14:48 GMT (16:48 CEST), Schiaparelli will wake up and a few minutes later begin transmitting a beacon signal (Schiaparelli will have se4parated from the ExoMars/TGO orbiter on 16 October).

Mars Express will already have pointed Melacom’s small antenna to the spot above the planet where Schiaparelli will appear, and will begin recording the beacon signal, ‘slewing’ – rotating – continuously so as to keep its antenna pointed to follow the module’s descent trajectory.

ExoMars 2016 Schiaparelli descent sequence Credit: ESA/ATG medialab

ExoMars 2016 Schiaparelli descent sequence Credit: ESA/ATG medialab

“Recording will continue through touch-down and the first approximately fifteen minutes of surface operation, after which Schiaparelli will be programmed to switch off and Mars Express will stop recording,” says Mars Express Spacecraft Operations Engineer Simon Wood.

The Schiaparelli signal data will be saved on board Mars Express in two segments; the first, larger, segment will record signals from wake up of the module until about 20 minutes before it reaches the Martian atmosphere, while the second, smaller, segment will record the descent through the atmosphere, touch down and the first 15 minutes of surface operations.

“Then, Mars Express will re-orient its main antenna toward Earth and download the second, smaller segment of recorded data, which should contain the first in-situ confirmation from Mars of Schiaparelli’s arrival and landing,” says Simon.

The data will be received via ESA’s Cebreros deep-space ground station, in Spain, by the Mars Express flight control team at ESOC, ESA’s mission control centre in Darmstadt, Germany, and then passed on to the ExoMars mission controllers.

Even more friends

Mars Express won’t be the only ‘set of ears’ listening in to Schiaparelli’s descent that day.

At Mars, NASA’s Mars Reconnaissance Orbiter (MRO) will monitor signals from Schiaparelli, but only after its landing, due to MRO’s orbital geometry.

MRO - Mars Reconnaissance Orbiter

Credit: NASA/JPL-Caltech

The TGO orbiter, while conducting its own critical orbit entry manoeuvre, will also record Schiaparelli’s descent and landing, but this data can only be downloaded some hours after it has completed orbit entry.

In the following days, Mars Express and MRO – as well as the other NASA Mars orbiters, Odyssey and MAVEN – will each serve as data-relay platforms, overflying Schiaparelli’s landing site in Meridiani Planum once or twice per day, picking up data transmitted from the lander during its nominal two- to four-day surface science mission, and relaying these to Earth.

Mars Express will also support the Schiaparelli mission through remote sensing measurements over the landing site during several weeks prior to the event.

 

Rebranding the spacecraft formerly known as Mars Express

Editor's note: This post was submitted by the MEX team at ESOC this morning, 1 April, and we must admit, while we're surprised at the suddenness of this development (and we promise we hadn't previously heard any mention of this around the ESOC Canteen at lunch), this is not entirely unexpected. Ever since that 'other' Mars mission took off, public interest in the venerable Mars Express spacecraft has plummeted. Desperate times require desperate measures!

As the 'Mission Formerly Known as Mars Express' is almost 13 years old, and the younger, sprightlier ExoMars/TGO is now getting all the attention, the team decided the only way to rescue MEX's sagging public rankings was to have a rebranding.

Try naming this one, Internet!

Try naming this one, Internet! Credit: NASA/Philco Corp

As is the thing to do these days, we put it out to the public to rename the mission. Sorry if you didn't get a chance to suggest names and vote on the best, but the polls are now closed and we are pleased to announce the new name of Europe's first – and dare we say original! – Mars mission.

In reverse order, the selections are:

  • Mars Express: 0 votes 1 vote (updated due to a hanging chad and because our Flight Director says so)
  • Mars Express (but with added lens flares): 1 vote
  • It's Still Alive? Wow! 1 vote
  • Thunderchild II: 3 votes
  • Name it after some scientist, I don't know who: 6 votes
  • The Hoff: 8 votes
  • A strange symbol like what Prince did: 19 votes
  • Bring Me the Chocolate, Mars Explorer: A lot of votes (we lost count and then the system crashed)
  • Spacey McSpaceFace: 5,983,462 votes

The lawyers in Paris insist we run the risk of legal action if we disregard what was, after all, a public vote of European taxpayers, so the new name is binding and we are now stuck with it. Thank you, Internet.

From the Spacey McSpaceFace Flight Operations Team

Best wishes from Mars Express

A super-nice note and team photo sent in by the Mars Express flight control team at ESOC! This was written by Luke Lucas, on behalf of the team who fly ESA's venerable Mars mission – now looking forward to a new buddy in orbit!

Mars Express has been orbiting Mars for just over 12 years, and soon will be joined by another ESA explorer. The excitement is building here at ESOC as the final preparations for the ExoMars launch are made.

MEX Flight Control Team at ESOC Credit: ESA

MEX Flight Control Team at ESOC Credit: ESA

Recently, teams from industry, the science community and ESTEC have been arriving; and here at ESOC, the simulation campaign is drawing to a close. The simulation campaign involves the flight control team (FCT), practising and practising the launch and other mission phases using a spacecraft simulator (computer program). The ExoMars team will have practised nominal and contingency operations, ensuring that procedures are ready and – most critically – that the FCT are as prepared as possible to successfully operate the spacecraft.

The ExoMars dress rehearsal is set for tomorrow; then, the next time the team are in the Main Control Room it will be for actual launch and real telemetry from the very real spacecraft, not a simulator...

Any launch is a mixture of high pressure and great excitement. An unforgettable occasion!

We wish the ExoMars team all the best and look forward to greeting a fellow explorer at Mars.

Kind regards

– Luke & Mars Express

Update on Phobos flyby science results

Update from ESA's Mars Express project scientist Dmitri Titov on the recent Phobos flyby results.

Unfortunately, HRSC imaging didn't work due to a transient issue with the onboard memory, which meant that no data were saved. This happens from time to time on our 12-year-old spacecraft and unfortunately this time it occurred during a flyby.

The good (excellent!) news is that other instruments did acquire data, particularly ASPERA, the Analyzer of Space Plasma and Energetic Atoms, which studied interactions between the solar wind and Phobos. It will take the instrument team some time to analyse and process their results, but the initial report is that all went very well.

The MARSIS radar (the Subsurface Sounding Radar/Altimeter) also operated during flyby. Although data are still being processed, it was possible to ascertain that Phobos was detected both in subsurface sounding mode and through ionosphere sounding.

Two more close encounters with Phobos will occur in 2016. On 4 July, Mars Express will approach Phobos at ~350 km, and on 16 November the spacecraft will flyby as close as 127 km. Both flybys will be used to continue the programme of moon investigations.

Mars Express continues exploring the Red Planet - soon in the company of ExoMars 2016 Trace Gas Orbiter!

We'll update you here in the blog when we have news.

Skimming Phobos

Inputs from today's blog post were provided by Thomas Duxbury, an interdisciplinary scientist on MEX for the Mars moons and Mars geodesy/cartography (and also a co-investigator on the HRSC scene team), Dmitri Titov, ESA's Mars Express project scientist, and Simon Wood, from the MEX mission operations team at ESOC, ESA's European Space Operations Centre, Darmstadt, Germany.

On Thursday, 14 January, ESA’s Mars Express spacecraft will make an unusually close flyby of the largest Martian moon, Phobos, passing the surface at just 53 km at closet approach at 16:00:21 UTC (17:00 CET) on orbit 15260.

The event will mark the spacecraft’s closest flyby of the moon in 2016, and, as a point of comparison, most of the other almost-60 Phobos flybys this year will occur between several hundred up to almost 2000 km. So it’s a real skimmer!

Phobos flyby 14012016

Predicted view from MEX for the 14 Jan 2016 Phobos flyby. The centre image is the predicted perspective view of Phobos at closest approach. This shows the view along Phobos’ shorter axes and it appears smaller than the other two images, which show the view along Phobos’ longest axis. Credit: T. Duxbury

The flyby will enable Mars Express instruments, especially the HRSC – the High Resolution Stereo Camera – to see points of the moon’s surface that have not previously been observed from such a close range.

“This flyby will provide very good viewing, within 1,000 km, of an area previously not seen well,” Dmitri Titov, ESA's Mars Express project scientist. “HRSC will be taking images; the MARSIS radar and the ASPERA-3 particle instrument will operate as well to sound the subsurface and plasma environment of the moon.”

+ marks the spot

The “+” in the predicted images (see above) indicates a possible landing site for the future Russian Phobos Grunt sample return mission.

“This flyby is important as it will allow us to finally view this area on Phobos that has yet to be seen at high resolution and excellent lighting,” says Thomas Duxbury, professor in planetary science at George Mason University, USA.

In the past, Mars Express has made closer flybys, but not by much. On 29 December 2013, Mars Express flew by at just 45 km, close enough that the moon’s gravity pulled the spacecraft slightly off its course, enabling new estimates of the Phobos mass and density.

Phobos 2010

Phobos as seen by the HRSC nadir channel during Mars Express Orbit 7926 in 2010. Credit: ESA/DLR/FU Berlin (G. Neukum)

The flyby is an operational challenge as well as a scientific opportunity, as the positions of the moon and Mars Express must be known very, very precisely in order to safely make the ‘skim-by’.

Commands on board

Commands to trigger the instruments’ observations were uploaded  Thursday, 7 January, following last-minute optimisation of the expected position of Phobos relative to the spacecraft provided by the flight dynamics team at ESOC , Darmstadt.

“This is needed due to the high level of precision required to target Phobos with the instruments at such a close distance,” says Mars Express Spacecraft Operations Engineer Simon Wood.

“The activity will then take place fully automated and without intervention by the operations team at ESOC, who will be closely monitoring the flyby.”

Deciphering Phobos

Flybys such as this help generate evidence to understand how the moon was formed.

The mass of Phobos is estimated as 1.0603 x 10^16 kg (uncertainty less than 0.5 %) and the density is 1862 kg/m3 (uncertainty less than 2%). For comparison, the density of Mars is about 3930 kg/m3, and Earth has a density of around 5520 kg/m3.

The low density of Phobos is consistent with the moon having a high porosity with an uneven mass distribution; in other words, it is essentially a rubble pile with large empty spaces between the rocky blocks that make up the moon’s interior.

This favours the formation scenario in which Phobos was born in orbit around Mars from a disc of debris and is not a captured asteroid – one of the other leading theories for how Phobos and its sibling Deimos came into existence.

Mars Express in orbit around Mars. Credit: ESA/AOES Medialab

Mars Express in orbit around Mars. Credit: ESA/AOES Medialab

The debris disc could have resulted from a large impact on the surface of Mars, or perhaps Phobos (and maybe Deimos) formed from left-over debris from the formation of Mars itself.

Data from such flybys will also prove valuable in planning future robotic or even human missions to land on the moon, and ideal location from which to observe Mars.

It is expected that the initial results from this flyby will be available in the coming weeks.

--

Editor's comment: It is interesting to note that, because the polar orbit of Mars Express intersects the equatorial orbit of Phobos, at some point in the future – long after Mars Express has depleted its fuel and has been shut down – the spacecraft is likely to impact the moon.

VMC Schools campaign projects

Get ready to do a lot of scrolling! This is our biggest, baddest blog post ever! #VMCSchools

ESA_AnimationThey're in!

We're starting to receive projects from the schools, youth groups and clubs that are taking part in our VMC Imaging Campaign, and the results are simply superb!

This blog post will present the ones we've received so far, and we'll update you in future posts once we get the rest (several participants asked for extensions past the 31 July deadline until September, so it will still be a few weeks – but that's fine when the quality is this good!).

To recap: In March/April, VMC imaging target proposals were submitted by 25 schools, youth groups and clubs in 12 countries. After extensive analysis, the Mars Express team at ESOC confirmed 22 were doable, given spacecraft and priority science constraints; later, the remaining three participates agreed to take over alternate targets so, in fact, all 25 received image sets. Imaging took place during several dedicated orbits 25/26 May, and we distributed image sets via email the first week in June.

Here's a little teaser animation developed by the MEX team using most of the 1000+ images acquired as part of the VMC Schools campaign, mashed up to show a full orbit:

Since then, participating groups have been working on analysis of their images, and on educational projects that make use of the images in imaginative, scientific and/or artistic ways (this is a STEAM activity, after all!). And the results are well worth the wait!

Here's the first impression sent in from the MEX team at ESOC, courtesy Mars Express Spacecraft Operations Engineer Andy Johnstone:

You've all achieved what we wanted to accomplish with this project by taking our fairly basic VMC images and doing some really cool things with them! Some of your efforts in image processing have been spectacular and deserve to be published in an astronomy magazine! Your artistry has been amazing and helped brighten up our control room, while the stories, videos and imaginings of visits to the Red Planet have been awesome.

The main thing that's stood out to us is the passion and enthusiasm that you've all shown. That has really made us proud and we're very glad that this opportunity (conjunction season!) to get so many VMC images came up. We're planning to have another webcast in September, once the final two projects are in, to go through each of your projects and give you all some feedback.

Thank you all for the effort you've put in and we hope that if we manage to do anything similar in the future that you'll all take part again.

Herewith, we are tremendously delighted (and I dare say just a little proud!) to present (in alphabetical order) the first sets of results and projects from ESA's VMC Imaging Campaign.


Associazione Astronomica Antares, Foligno, Italy
Target: Cavi Angusti

Analysis of atmosphere and ice cap

AIM: The chosen region of Mars (Cavi Angusti, a latin name as almost all the geological Mars structures) is located in the south polar region of the Red planet, and is characterized by vast and deep valleys where the thin atmosphere of Mars can produce fogs or mists with daily development. The Mars Express spacecraft passed several times over Cavi Angusti at a distance of about 3000 km, at different times of Martian days, thus allowing us to study the area with a detail of a few kilometres, enough to reveal any cloud formations.

VMC Schools Campaign - results from Antares Foligno

VMC Schools Campaign - results from Antares Foligno

Results from Antares Foligno

Results from Antares Foligno


Aspiration Creation, Dunwoody, GA, USA
Target: South Pole

Project report: The South Pole - A Comparison/Contrast of Planets Earth and Mars During Summer Solstice

Project PPT in website

  • Our images are of Mars’ South Pole in Summer
  • We separated into groups to research the south poles of Mars and Earth, focusing on Summer
  • Each group was responsible for finding information (and pictures) and becoming the Subject Expert on that information
  • Subject Experts took notes and were required to explain their findings to the rest of the larger group
  • Everyone collaborated to aggregate findings into a list
  • Final list was used to create a Venn Diagram illustrating differences and similarities
Aspiration Creation

Aspiration Creation

Aspiration Creation

Aspiration Creation


Curiosity Laboratory, Asociacion Codec de Madrid, Spain
Target: SHARP MOUNTAIN (where Curiosity landed)

AIM: We would like also to reflect, using the images facilitated by ESA, on the challenges that exploring our dear red planet pose, and on how they can be overcome so that men can get to Mars.

We have used your Mars images about Aeolis Mons in our "space and robotic project" with our children in CODEC. Please, find our latest video "Arriving Mars 2020", performing the whole Mars missions! And with this CURIOSITY LAB FINAL VIDEO we would like to complete our project with ESA. THANK YOU and ESA so much for all this fantastic images!


Hathern Primary School,  Leicestershire, UK
Target: Meridian I Planum

AIM: To investigate the conclusion that water was present on Mars looking at surface features such as hematite. Investigate extremophiles present on Earth that may have been present on Mars both in the watery past, and present dry conditions. Come to conclusions about what bio signatures may be present to provide evidence of former or current life. Draw and make artistic representations of life on Mars. Write a poem about life on Mars.

Project PPT

Project art

Project art in Flickr

Slide35Hathern School art

Hathern School art

mars art images_Page_22Slide45


HTBLA Kaindorf, Kaindorf an der Sulm, Austria
Target: Martian Northpole

AIM: Image the Northpole, because we want to find the best landing site for a manned mission. In winter Planum Boreum's permanent ice cap consisting mainly of water ice and carbondioxid reaches its maximum. So we can find ground without ice to land on, but has water nearby.

Project website (EN): http://www.htl-kaindorf.at/mars/

Project website (DE): http://www.htl-kaindorf.at/mars/indexDE.html

Project website (ES): http://www.htl-kaindorf.at/mars/indexES.html

Life on MarsClick for a fabulous animation!ESA_Animation40 October 2043:: The best 'glimpse of the future' we've seen! How an astronaut will view Mars, courtesy of the Mars Express VMC and HTBLA Kaindorf.


Innovation Centre Mill of Knowledge, Toruń, Poland Target: System of canyons: Valles Marineris (Location: 13.8S, 59.2W)

AIM: This is interesting because: the Valles Marineris rift system is one of the larger canyons of the Solar System and stretches for nearly a quarter of the planet’s circumference. It has been recently suggested that Valles Marineris is a large tectonic "crack" in the Martian crust. Most researchers agree that this formed as the crust thickened in the That is region to the west, and was subsequently widened by erosion. However, near the eastern flanks of the rift, there appear to be some channels that may have been formed by water or carbon dioxide. The Valles Marineris canyon system is is such a great example of the planet's tectonic activity and place of geological processes occurrence. In addition, it is possible that in these canyons once flowed water and this could be a friendly place for the emergence and development of life on Mars. Project PPT Project video Project images in Flickr      VMC Schools Workshop, Poland


IES Alpujarra, Spain
Target: Olympus Mons or whichever frustum-like mountain whose dimensions are well known and easily available

AIM: Kids will firstly work out the picture scale using data available on the Internet and the picture itself. Secondly, they'll calculate some distances in a straight line and the dimensions and areas of some shapes that may be found on the picture. Thirdly, we'll try to determine some slopes on the picture to work out an average. Finally, we'll calculate the approximate area and volume of Mount Olympus thinking of it as a frustum. The results will be presented in English.

Project webpage:

IES Alpujarra - ESA

IES Alpujarra - ESA

Student worksheet:


Out of This World Space Program, Marietta, GA USA
Target: Elysium Mons

Aim: Convert picture to a 3D scaled model and present it to the Science lab or make a puzzle with the picture or make posters that we could place in a local park to teach the general public about the awesomeness of Mars and ESA.

Project PPT

Artemis13 from Mt. Bethel Media Center on Vimeo.


State Gymnasium No. 1, Riga, Latvia
Target: Ares Vallis (19.13 N, 33.22 W), located in the northern hemisphere or Mars

AIM: This is a great target because:

  1. Its a very large feature(1700km diameter). and easily noticeable
  2. It is possible it was carved by fluids from when Mars still had liquid water on its surface. There are numerous estuaries and deltas of past rivers.
  3. Large amount of craters
  4. The NASA probe Pathfinder sits in Ares Vallis.
  5.  Mark Watney, the character from the popular fictional book "The Martian" travels through Ares Vallis and even recovers the Pathfinder
  6. Last time Mars Express took photos of the Valleys was back in 2007

Card


Sterrenwacht de Polderster, Assenede, Belgium Target: Phillips crater

AIM: Would like to do astrophoto processsing. The height (1900km) of the spacecraft is not too low. Images of 200ms must be possible to resolve. 15-146-VMC merge 48-66 10ms with labels PV and SL

CardCard

Processed images via Flickr


Sternwarte Siebengebirge e.V., Bad Honnef, Germany
Target: Olympus Mons / Tharsis region, Volcanoes

AIM: By participating in the VMC Imaging Campaign we aim to achieve:

  • The inspiration and enthusiasm of children, adolescents and adults in the subject of space, astronomy, space travel, ESA and in particular the Mars Express mission
  • The wider publication and awareness of the Mars Express research results, also through our own publications
  • The promotion of scientific knowledge about our neighboring planet Mars
  • The combination of science and art
  • The promotion of our present knowledge of the volcanoes on Mars in comparison with the volcanic past of the Siebengebirge and the nearby Vulkan-Eifel
  • The awareness of our new club by a wider audience
  • Raising public awareness of our aim to create a planet park and a stationary observatory in the Siebengebirge nature reserve.

Project website

Sternwarte Siebengebirge

Sternwarte Siebengebirge

RESULTS TBC: The club jury will view the works of art from the participating schools and select the most striking piece. The award to the best work of art will take place at a public exhibition. The school being awarded first place will be presented with a new telescope for educational use. Thereafter there will be a presentation on the subject of the VMC Imaging Campaign, Olympus Mons and volcanoes on Mars and on Earth (in particular in the Siebengebirge region).


Children's Club Reegulus, University of Tartu Museum, Old Observatory, Tartu, Estonia, Target: Terra Meridiani

AIM: Our project is called “Picture can say more than a thousand words.” Our aim is to see what are the thousand words we can say about the picture in order to discuss with the children the ways in which we can study other planets in comparison to our own. We would like to use the image to study Martian landscape in detail with the children also with the help of geologists from the University of Tartu Natural History Museum. In addition to geology, we would also like to use the materials as part of the Struve Arc celebrations talking about mapping Earth and Mars. After we have discussed the features seen in the picture, the children will choose the thousand words to be featured on a poster with the picture. This poster will be shown in our museum for the public and we will introduce this also at a large festival taking place in July festival that also has a science section. We already have a programme for schools where we compare the atmospheres of Earth, Mars, Venus and Titan to each other and discuss why we should appreciate our environment.

Children's Club Reegulus

Poster display by Children's Club Reegulus at Science Festival

Poster as displayed at the Tartu Science Festival

We printed out a number of images and posted them on a whiteboard. Then we began adding words and questions to the whiteboard: what we saw, what we knew and what else we needed to find out. We visited the University of Tartu Natural History Museum to find out about the geology of Mars. After the visit, we added more words, statements and questions to our board. During the final meeting we tried to answer as much questions as possible with the aid of literature and internet and decided on the content of the poster. The poster was finished for a science festival we had in Tartu in July 2015 and the visitors of the festival were able to read it. We also filmed the whole process but unfortunately were not able to secure everyone's permission to publish this.  Perhaps we will do a trailer version later.

The poster gives an overview of Mars that is based mostly on what we saw from the images and the questions that came to our mind while looking at the pictures. The children were most fascinated about the volcanoes, the possibility of life on Mars and, of course, when will we land a human on Mars.

Reegulus_Marss2


IMAGE SETS SENT

We've just mailed the image sets! Phew! Please check your mail - and ensure that we have a correct valid email address for you/your team/school/group.

This is a collage of Visual Monitoring Camera (VMC) images acquired on 25 May and downloaded to Earth early on 26 May 2015. They are among the first in a series of over 2000 images that are being acquired by Mars Express in support of the VMC Schools Campaign. ESA/Mars Express/VMC – CC BY-SA IGO 3.0

This is a collage of Visual Monitoring Camera (VMC) images acquired on 25 May and downloaded to Earth early on 26 May 2015. They are among the first in a series of over 2000 images that are being acquired by Mars Express in support of the VMC Schools Campaign. ESA/Mars Express/VMC – CC BY-SA IGO 3.0

The mail you'll get will read, in part:

The VMC image files acquired by Mars Express on 25/26 May 2015 and showing your requested target (or adequate replacements - see comment below) are now available for download as a ZIP/RAR archive via:

http://XXXXXXx

Note also: you will find a set of RAW images in each image archive; these are the original data images as recorded by the VMC on board MEX, and as retrieved on Earth. For details on working with these, VMC blog.
Continue reading

Update 1 June

Today's update from Spacecraft Operations Engineer Simon Wood on the MEX team at ESOC on progress of the VMC Schools Campaign.

Sorting the ~2000 VMC Schools Campaign images is going well. We've got an initial collation of the images for each school / group done now. The sets are being double checked for accuracy.

Mars limb seen in VMC image 15-147_09.53.42_VMC_Img_No_8, acquired 27 May. Credit: ESA/Mars/Express/VMC - ESA - CC BY-SA IGO 3.0

Mars limb seen in VMC image 15-147_09.53.42_VMC_Img_No_8, acquired 27 May. Credit: ESA/Mars/Express/VMC - ESA - CC BY-SA IGO 3.0

There's a bit of disappointing news: there are a couple of requested imaging targets that didn't work out very well, either because of the dust or the lighting conditions, or because the image just simply doesn't show the target too well. For these, we will dig through the VMC archive and provide some better quality VMC images from past observations that do show the requested target adequately.

Editor's note: We expect to start mailing images within a couple working days. 🙂

Update 29 May – and exploring Mars on Earth

Today's update from the MEX team at ESOC on progress of the VMC Schools Campaign.

Initial image processing complete; all files exported as PNGs, together with the original RAW-format files (i.e. as recorded by VMC on board MEX). Total PNG file size is 702MB. Now the sorting can begin!

And while you're waiting....

On Friday, 22 May (during last week's ESAHangout for the VMC Schools Campaign), students at the Curiosity Lab (Madrid) were deeply occupied in... exploring Mars! And we've got the the video to prove it (see below).

Curiosity Lab is one of the youth groups taking part in the VMC Schools Campaign, and have specifically requested images showing Aeolis Mons. ¡Muchas gracias! to the entire team for sharing this lively video – and best wishes for your VMC project – we can't wait to see it!

PS: The Curiosity lab group have published an update on their VMC Schools Campaign participation in their blog (in Spanish).