This four-image NAVCAM montage comprises images taken on 28 October – shortly before moving to the pre-lander delivery orbit – from a distance of 9.7 km from the centre of comet 67P/C-G, or roughly 7.7 km from the surface.

The corresponding image scale is about 65 cm/pixel, so each 1024 x 1024 pixel frame is about 665 m across. The montage has been slightly tweaked and the central vignetting reduced. The four original frames are provided at the end of the post.

Four-image NAVCAM montage comprising images taken on 28 October. Credits: ESA/Rosetta/NAVCAM

Four-image NAVCAM montage comprising images taken on 28 October. Credits: ESA/Rosetta/NAVCAM

The montage nicely ‘joins the dots’ with the region presented in the  8 October montage.

Given the peculiar low-density, low-gravity nature of a comet, it is perhaps dangerous to make direct analogies with Earth-like features and processes. But until we have the science team’s analysis of what they think is actually happening on this comet, analogies might nevertheless still provide a useful way of trying to decipher what we are seeing.

In a number of places in this region, there is an impression that the prevalent dusty material covering the surface is not particularly stable and that it occasionally gives way, perhaps in a similar way that snow on a mountain side may become dislodged, giving rise to an avalanche or, alternatively, a rockfall or landslide. For example, look in the lower third of the top left image. There you’ll see what looks like a crack close to the edge of the cliff, suggesting that this portion might eventually collapse, similar to the way a snow cornice on a mountain ridge peels away. This feature is also visible in the 8 October image.

Another example can be seen in the lower right corner of the bottom right image, where material appears to have slid over the edge of a cliff.

On Earth, avalanches are typically triggered by an increased load, leading to the mechanical failure of a slab of material under gravity, or due to melting snow as a result of increased solar radiation. On a comet, presumably the latter process is more likely to occur, with sublimation-based erosion acting to weaken the surface material, resulting in a collapse.

 

 

ESA_Rosetta_NAVCAM_141028_D

ESA_Rosetta_NAVCAM_141028_B

ESA_Rosetta_NAVCAM_141028_AESA_Rosetta_NAVCAM_141028_C