Atomic Quantum Sensors in Space and Fundamental Tests

C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris ISS Symposium, May 2-4, 2012, Berlin

CS1	I would like to thank you for the very int visit. It is my 3 visit to Heidelberg
	I would lke to describe the recent progress in col datom clocks and precision measureemnt. The fact that you can cool atom to tempeature of a
	few hunderd nanK enables to observe them for very long times and thus make precision measuremnts.
	Christophe Salomon, 22/11/2007

Slide 1

Atomic Quantum Sensors

1) Use quantum interference in atoms for precision measurements Matter-wave interferometers and clocks as old as Quantum Mech.

2) Space: cold atoms, microgravity, quietness, World coverage New opportunities with large de Broglie wavelength $\lambda = h / Mv$

Matter-wave sensors and precision measurements

Clocks and Interferometers

T: interaction time with ELM field Slow atoms: *T* large; atomic fountain or microgravity Trapped atoms: *T* large

Clocks: gain prop. to T

Inertial sensors: Accelerometers: gain as T^2 Sagnac gyrometers : gain as L T

Current sensitivity: Acceleration: $\delta g/g = 1.4 \ 10^{-8}$ in 1s Rotation: $\Omega = 6 \ 10^{-10}$ rad s⁻¹ in 1 s

Clocks:

Frequency stability: $\delta v/v = 2 \ 10^{-15}$ in 1s Accuracy: $= 8.6 \ 10^{-18}$ 1989 Nobel Prize in Physics N. Ramsey, H. Dehmelt, W. Paul

separated oscillatory fields method for atomic clocks, ion trap techniques

1997 Nobel prize in physics S. Chu, C. Cohen-Tannoudji, W. Phillips Laser manipulation of atoms

2005 Nobel prize in physics J. Hall, T. Haensch, R. Glauber Laser precision spectroscopy Optical frequency comb Quantum optics

Fundamental Questions

1) Missing mass in the Universe

Dark matter and dark energy represent 95% of the mass of the Universe but have unknown origin !

New particles and/or change of the laws of gravity ?

2) Atomic Sensors can tests fundamental laws with exquisite precision

Einstein's equivalence principle and Universality of Free Fall

Tests of gravity in Earth orbit or at solar system scale

Precision redshift measurement

Variability of fundamental constants

3) Quantum sensors have societal applications

Accelerometry, Gravimetry, Navigation, GPS, GALILEO, Geodesy, Earth monitoring,...

Complementarity to ground based research: example: cold atom gravimeter

$$\delta\phi = -k_{eff}aT^2 = -k_{eff}gT^2 = -2k_LgT^2$$

Ground sensitivity: $\sigma_g \sim 10^{-7} \text{ m.s}^{-2}$ at 1s with interrogation time 100 ms

Extrapolation to space: <10⁻¹⁰ m.s⁻² at 1s with interrogation time 2 s

With ultra-cold atoms: $\sim 10^{-11}$ m.s⁻² at 1s with interrogation time 10 s

Earthquake in China, March 20th 2008 (magnitude 7,7)

Space Projects: Q-WEP, SAI, ICE Start-up company: MuQuans Field applications

BEC in microgravity: QUANTUS

Exploring coherent matter waves at lowest energy scales, for:

• Precision inertial sensing

Bhias

Atomic wave packet delocalised over 1 mm

• Quantum test of the Equivalence Principle at 1 part in 10¹⁵

30 ms

500 ms

1000 ms

Coordinator: E. Rasel, Hannover Univ Bose-Einstein Condensation in μg Science, June 16, 2010

Achievements:

- Interferometry in free fall
- Robust alignment
- > 170 drops, 3 drops per day
- Study of Evolution & control of condensates

Goals:

- Test of chip-based and alloptical atom lasers for precision inertial sensing
- Atom interferometry with coherent matter waves
- Test of free fall of isotopes of potassium and rubidium
- STE-QUEST

Atomic Clocks in Space: the ACES Mission on the ISS

• A cold atom Cesium clock in space

- Fundamental physics tests
- Worldwide access

CENTRE NATIONAL D'ETUDES SPATIALES

Cold Atom Clock in μ -gravity : PHARAO/ACES

Flight Model under construction Same technology is being applied to matter wave sensors

PHARAO Space Clock

Laser source

Delivery: end of 2012

Mass: 227 kg, Power 450 W Challenge: thermo-mechanical stability Three year operation

ACES on Columbus external platform

Current launch date : 2015 Mission duration : 18 months to 3 years

Do fundamental physical constants vary with time ?

Motivation: unification theories, string theory,... Damour, Polyakov, Marciano,....

 $\alpha_{elm}, m_e/m_p...$

Principle : Compare two or several clocks of different nature as a function of time

Microwave clock/Microwave clock: α , m_e/m_p , $g^{(i)}$

rubidium and cesium

Microwave/Optical clock : α , m_e/m_p , $g^{(i)}$

Optical Clock / Optical clock: $\boldsymbol{\alpha}$

The ovens and electrodes of the NPL strontium ion end-cap trap.

A Prediction of General Relativity: the gravitational redshift

Relativity with Optical Clocks at 30 cm level

C. W. Chou,* D. B. Hume, T. Rosenband, D. J. Wineland, Science 329, 1630, (2010)

Time dilation

Clock B is lifted up by 33 cm its rate is increased by 3. 4 10⁻¹⁷

Optical Clocks for Space

Relativistic Geodesy

The clock frequency depends on the Earth gravitational potential 10⁻¹⁶ per meter Best ground clocks have accuracy of 9 10⁻¹⁸ and will improve ! (NIST '10)

Competitive with satellite + levelling techniques at ~ 20 cm level

Possibility to measure the **potential difference** between the two clock locations at 10⁻¹⁷ level ie 10 cm

STE-QUEST

Space-Time Explorer and Quantum Equivalence Principle Space Test Currently one of the 4 candidate missions to Cosmic Vision Medium class size

- Earth gravitational red shift at 0.17ppm (x 700 over GPA, x10 beyond ACES)
- Test of the EP at 10⁻¹⁵ with quantum objects, vs Microscope with classical masses

Future Time Definition from Space

- The Earth gravitational potential fluctuations will limit the precision of time on the ground at 10⁻¹⁸-10⁻¹⁹ (ie: cm to mm level)
- 2) The only Solution: set the reference clocks in space where potential fluctuations are vastly reduced
- 3) Improved Navigation, Earth Monitoring and Geodesy
- 4) Interesting for fundamental physics Tests

Summary

Matter-wave interferometers and cold atom clocks have entered into high precision measurement phase

Technology has progressed fast with routinely working instruments Clocks reach stabilities and accuracies in the sub 10⁻¹⁷ range

Impressive efforts for miniaturization and reliability for space and ground Compact laser sources and atom chips quantum gases sources: BEC in microgravity and atom lasers

ACES on the ISS (2015-2017); new relativity tests

Optical Clocks with 10⁻¹⁷ frequency stability in 2020 on the ISS or satellite Test of Equivalence Principle in Space with quantum objects beyond 10⁻¹⁵ Precise accelerometry demonstration

High precision quantum sensors will bring tests of the laws of gravitation to a new level of precision

Thank you for your attention !