ISS/Kibo Utilization Strategy in Japan
ISS Symposium 2012

May 4th, 2012

Makoto Asashima, Ph. D.
Fellow, National Institute of Advanced Industrial Science and Technology (AIST)/Fellow and Director, Research Center for Stem Cell Engineering (SCRC)
Chairman, the ISS & Kibo Utilization Promotion Committee
Topics

- “Kibo” Utilization Scenario till 2020
- Life Science Scenario
- Space Medicine Scenario
- Physical/Chemical Science Scenario
- International Collaboration for Advanced Research Capability on ISS: Enhance onboard Mouse/Rat research Capability
- Kibo/ISS Utilization Announcement of Opportunity
“Kibo” Utilization Scenario till 2020

- “Kibo” Utilization Scenario is scoping research areas in Life Science, Space Medicine and Physical/Chemical science performed in JEM-PM till 2020. JAXA President asked an external advisory committee to produce this scenario.

- Highly-prioritized research areas will be established among three research areas (Life Science, Space Medicine, Physical/Chemical science).

 【Category①】 Forefront science & technology research only achieved in ISS & “Kibo”
 【Category②】 Fundamental technology development for space activity

- JAXA will select some large scale research projects in highly-prioritized research areas through AO process by this summer and promote them directly.

- JAXA will invite some foreign research teams to the selected research projects. JAXA plans to review the proposals by the international peer reviewers.
【Category①】 Forefront science & technology research only enabled by ISS and “Kibo”

(1) Long-term Target (Over 5 yrs)
 ・Life Science and Physical/Chemical Science
(2) Short-term Target (About 3 yrs)
 ・Contribution to resolving social problems such as aging society and chronic disease
 ・Contribution to resolving energy and environmental problems
 ・Contribution to disaster recovery including education and out-reach activities.

【Category②】 Fundamental technology development for space activity
Accumulate key technologies and knowledge for Japan’s future space activities
 ・Space medicine, Space technology development
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilization Phase</td>
<td></td>
</tr>
<tr>
<td>1st Phase</td>
<td></td>
</tr>
<tr>
<td>2nd Phase</td>
<td></td>
</tr>
<tr>
<td>3rd Phase</td>
<td></td>
</tr>
<tr>
<td>4th Phase and onward</td>
<td></td>
</tr>
</tbody>
</table>

Current Scenario Coverage
- Various themes to explore space environment utilization
- Implement leading scientific researches
- Foster utilization to meet society need and citizen’s expectation
- Forefront science & technology research only enabled by ISS & “Kibo”
- Fundamental technology development for space activity

Theme Selection Process
- Bottom-up ▲
- Highly-Promised ▲

Category ① Forefront science & technology research only enabled by ISS & “Kibo”
1. **Long-term target area**
 - Life Science and Physical/Chemical science
2. **Short-term target area**
 - Contributing to aging society and chronic disease
 - Contributing to energy and environmental problems
 - Contributing to disaster recovery

Category ② Fundamental technology development for space activity
- Space medicine, Space technology development

Scenario Study
- JEM-PM Utilization Themes
Life Science

- Plants
- Microbe
- Cells
- C. elegans
- Vertebrates (Small Fish)
- Mammal (Mice/Rats)
- Human

Timeline:
- 2015
- 2020
ISS/Kibo utilization scenario in life sciences toward 2020

Highly-promised Research Areas in Life Science

LS1: “Integrative understanding of biological responding mechanisms to the space environment” as forefront science & technology research only enabled by ISS and “Kibo”, utilizing cutting-edge analysis technologies to achieve high-quality sciences.

LS2: “Establishment of scientific foundations to expand human activity to space” as fundamental technology development for space activity, such as future human space exploration.

Model Organism

- Plants / Microbe / Cells
- Vertebrates
- Mammals (Rodent)
- Human

Current life sciences experiment facilities onboard Kibo

- Clean Bench (CB)
- Cell Biology Exp. Facility (CBEF)
- Fluorescence Microscope
- Aquatic Habitat (AQH)

Study necessary experiment facility / devices based on the scenario

Contribute to society on earth using pathological animal models

Habitat for mice, rats, hibernant animals
Space Medicine

- Medical PC
- USB camera
- Electronic stethoscope
- Measuring instrument for blood oxygen saturation level (pulseoximeter)
- Electroencephalograph
- Holter monitor

On the ground
Aboard KIBO in orbit
ISS/Kibo utilization scenario in Space Medicine toward 2020

◆ Highly-prioritized Research Areas in Space Medicine

SM1: ”Space medicine research to improve health care technologies of astronauts” as key technology development for future human space activity.

SM2: ”Space biomedical research to elucidate fundamental mechanisms of the effects of space flight on humans and animals” to achieve the goal of SM1, as forefront science & technology research only enabled by ISS and “Kibo”,

◆ Highly-prioritized Research Area Candidates (Research Areas and Critical Questions)

(1) Physiological Countermeasure
- Countermeasures to prevent bone loss and metabolic disorder of bone mineral
- Monitoring & countermeasure to sleep and biological rhythms
- Evaluation & preventive countermeasure to muscle atrophy
- Mechanism clarification & preventive measures to bone loss and muscle atrophy
- Space environmental stress responses in Cardio-vascular, neuro-vestibular, and immune systems
- Multi-generation effects of space flight by use of model animals (medaka fish, mouse, rat)

(2) Psychological Support
- Monitoring/countermeasure of Stress/Fatigue

(3) Health Care against Space Radiation
- Advanced space radiation dose monitoring technology

(4) Space Environmental medicine
- Monitoring of water, air, microorganism, and noise & Work environmental management

(5) Space Telemedicine
- Bio-monitoring & Disease prevention
- Dose assessment of low-dose, long-duration space radiation exposure & Development of bio-maker
- Prevention & Protection of biological effects from space radiation exposure
Physical/Chemical science

Ice crystal in ground (not symmetric)

Ice crystal in microgravity (symmetric)
ISS/Kibo utilization scenario in Physical/Chemical science toward 2020

◆ Prioritized policy in Physical/Chemical science
(1) Systems significantly influenced by gravity, and science areas with great significance and spin-off to the society
(2) Prioritize new research areas with less former space experiments
(3) Not limit to research themes utilizing existing experiment payload

◆ Highly-prioritized Research Area Candidates in Physical/Chemical science

PCS1: The forefront science enabled by ISS
【Long term target】
✓ “Contribution to New Combustion System for Sustainable Earth”
✓ “Science and Technology of Bubbles, Droplets and Films”
✓ “Researches on self-organization phenomena in strongly coupled plasmas”
【Short term target】
✓ “Producing new materials from super cooled phase by container-less processing”
✓ “Survey of soft matter useful on the ground”

PCS:2 Basic technology development for space activity
✓ “Fundamental research for fire safety standard in space”
International collaboration for advanced research capabilities on ISS: Enhance onboard mouse/rats research capabilities

1) In both life sciences and space medicine scenarios, onboard mammal (mice, rats) habitation is strongly recommended as a good animal model for human.

2) Some IPs have already conducted mouse/rat experiment in space.

3) This research capability in a whole ISS is expected to be enhanced by the International collaboration.

Candidates for the collaboration

• Development and/or mutual use of IP’s unique onboard experiment facilities and analysis devices
• Launch and retrieval capability
• Research collaboration & joint experiment (sample share)

- Due date is June 29, 2012.
- JAXA will select the high priority proposals based on the “Kibo” Utilization Scenario.
- Annual AO is planned from this year so that the researchers can prepare their proposals based on their long term research planning.
Back up Charts
Status of Life Science Experiments on Kibo

Life science experiments on Kibo began (in Feb. 2009).

Year 2009

Cell & Life
- Nematode (RNA interference) [Higashitani]
- Frog kidney cell (dome formation) [Asashima]
- Human cell p53 influence [Ohnishi]
- Silkworm egg [Furusawa]
- Mutant human cell [Yatagai]

Technology for measuring the effects of radiation
- Arabidopsis thaliana cultivated (long term till 60th day) [Kamisaka]
- Oryza sativa cell wall (ferulic acid) [Wakabayashi]
- Root hydro-tropism (auxin) [Takahashi]
- Auxin dynamics [Takahashi]
- Plant’s gravity response system [Hoson]

Plants
- Arabidopsis thaliana cultivated (long term till 60th day) [Kamisaka]
- Root hydro-tropism (auxin) [Takahashi]
- Auxin dynamics [Takahashi]
- Plant’s gravity response system [Hoson]

Microorganism
- Experiment 1
- Monitoring microorganism in the Kibo module [Makimura & Nasu]
- Experiment 2
- Experiment 3

Year 2010

Cell & Life
- Muscle atrophy (ubiquitin) [Nikawa]
- Goldfish scale (bone metabolism) [Suzuki]
- Nerve cell (Mitochondria apoptosis) [Majima]
- Nematode (RNA interference) [Higashitani]

Technology for measuring the effects of radiation
- Human cell p53 influence [Ohnishi]
- Silkworm egg [Furusawa]
- Mutant human cell [Yatagai]

Plants
- Root hydro-tropism (auxin) [Takahashi]
- Auxin dynamics [Takahashi]
- Plant’s gravity response system [Hoson]

Microorganism
- Experiment 1
- Monitoring microorganism in the Kibo module [Makimura & Nasu]
- Experiment 2
- Experiment 3

Year 2011

Cell & Life
- Muscle atrophy (ubiquitin) [Nikawa]
- Goldfish scale (bone metabolism) [Suzuki]
- Nerve cell (Mitochondria apoptosis) [Majima]

Technology for measuring the effects of radiation
- Human cell p53 influence [Ohnishi]
- Silkworm egg [Furusawa]
- Mutant human cell [Yatagai]

Plants
- Root hydro-tropism (auxin) [Takahashi]
- Auxin dynamics [Takahashi]
- Plant’s gravity response system [Hoson]

Microorganism
- Experiment 1
- Monitoring microorganism in the Kibo module [Makimura & Nasu]
- Experiment 2
- Experiment 3

Year 2012

Cell & Life
- Medaka bone metabolism [Kudo]

Technology for measuring the effects of radiation
- Mouse’s frozen and dried sperm [Wakayama]

Plants
- Root hydro-tropism (auxin) [Takahashi]
- Auxin dynamics [Takahashi]
- Plant’s gravity response system [Hoson]

Microorganism
- Experiment 1
- Monitoring microorganism in the Kibo module [Makimura & Nasu]
- Experiment 2
- Experiment 3

Year 2013 -

Cell & Life
- Cells: gravity response, muscle atrophy, bone marrow cell: osteogenesis
- Nematodes: gene effects through aging and alternation of generations in space

Technology for measuring the effects of radiation
- Aquatic organisms: effects across generations (breeding across 3 generations), muscle atrophy, reproductive function, and stress evaluation

Plants
- Effects on life by long-term radiation exposure (max. 3 years), evaluation of effects on reproduction, growth and multiple generations

Microorganism
- Development of real-time radiation measuring technology
- Systems of graviperception and posture control
- Effective plant production, utilization technology, and life support
- In-orbit analysis and adaptation to monitoring and environment

15
Status of Space Medicine Research onboard the ISS

Initial Utilization of JEM:
- Verify KIBO’s utility

Medium-term utilization of JEM:
- High-level achievements from research, reducing risks, and identifying mechanisms
- Sophisticated research and preparation of post-ISS operations

Late ISS utilization:
- Sophisticated research and preparation of post-ISS operations
- Identify adaptability of living organisms to space environment
- Prepare human exploration of the Moon

Phase 1 (2008-2011):
- Complete

Phase 2 (2012-2015):
- Being considered

Phase 3 (2016-2020?):
- Being considered

- Measures for muscle atrophy and artificial gravity
- Adjustment of dynamic changes of cerebral circulation
- Adjustment of vestibular and blood pressure reactions
- Identification of lives of microbes and analysis of contamination
- Biological studies using killifish

Health Monitoring System

- Prevent bone loss and urinary calculi.
- Analyze live body rhythm.
- Analyze effects of space radiation.
- Monitor hair and fungi.
- Health monitoring system

Study on bone loss prevention with bisphosphonate

- Measures for muscle atrophy and artificial gravity
- Adjustment of dynamic changes of cerebral circulation
- Adjustment of vestibular and blood pressure reactions
- Identification of lives of microbes and analysis of contamination
- Biological studies using killifish

Artificial Gravity

- Measures for muscle atrophy and artificial gravity
- Adjustment of dynamic changes of cerebral circulation
- Adjustment of vestibular and blood pressure reactions
- Identification of lives of microbes and analysis of contamination
- Biological studies using killifish

Verification of biological mechanisms in model living organisms
Status of Materials Science Experiments on KIBO

Start of materials science experiments on KIBO (Aug. 2008)

<table>
<thead>
<tr>
<th>年</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013 after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid</td>
<td>1st series</td>
<td>2nd series</td>
<td>3rd series</td>
<td>4th series</td>
<td>5th series</td>
<td>5th series</td>
</tr>
<tr>
<td>Liquid Marangoni Convection Exp.[Kawamura, Nishino]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droplet Combustion Exp.[Mikami]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Crystal Observation Exp.[Tsukamoto]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antifreeze Protein Crystal Observation Exp. [Furukawa]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaseous Combustion Exp. [Maruta]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Combustion Exp. [Fujita]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal Growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice Exp.[Furukawa]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solidification/Crystallization Exp..[Inatomi]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Crystal Semiconductor Exp. [Knoshita]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiconductor Growth Exp.[Inatomi]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrostatic Levitation Furnace [TBD]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Crystallization Exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nano-skelton Exp.[Abe]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nano-template Exp.[Kinoshita]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colloid Crystal Observation Exp. [Sogami]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma Exp. in collaboration with DLR (Germany)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To be scheduled